男友太凶猛1v1高h,大地资源在线资源免费观看 ,人妻少妇精品视频二区,极度sm残忍bdsm变态

Global EditionASIA 中文雙語Fran?ais
China
Home / China / Innovation

Chinese researchers set new record for thinnest metal materials

By YAN DONGJIE | chinadaily.com.cn | Updated: 2025-03-13 17:33
Share
Share - WeChat

Chinese scientists have recently achieved the fabrication of single-atom-layer metals with a thickness of merely one-millionth the thickness of an A4 paper sheet, setting a new record for the thinnest metal materials. This marks the world's first realization of stable two-dimensional forms of non-layered metals.

Published in Nature on Thursday, this research by the Institute of Physics, Chinese Academy of Sciences, pushes the thickness of 2D metal materials to the angstrom scale (1 Å equals 0.1 nanometer), unlocking new possibilities for next-generation electronics, quantum computing, and high-efficiency catalysis, said Zhang Guangyu, corresponding author of the study.

"2D materials are special substances with only one or a few atomic layers. Their electrons are confined to move within a 2D plane, granting them extraordinary conductivity, transparency, and mechanical strength due to the quantum confinement effect," said Zhang, a researcher at the Institute of Physics.

Since the discovery of graphene in 2004, scientists have identified hundreds of 2D materials. These "miraculous thin films in the material world" are widely used in flexible screens, ultrafast transistors, and quantum devices.

However, all existing 2D materials are derived from layered crystals, like easily peelable layer cakes, while 97.5 percent of materials in the material world, including non-layered metals, resemble "compressed biscuits" due to their tightly bonded 3D atomic structures. Peeling a single atomic layer from such materials was considered nearly impossible, as Zhang vividly analogized.

"Traditional layered materials are like layer cakes connected by weak van der Waals forces between layers, whereas metal atoms are bound by strong metallic bonds, akin to tightly packed grains in a compressed biscuit," Zhang said, highlighting the core challenge in 2D metal fabrication.

Zhang's team developed an innovative "van der Waals squeezing" technique. By melting metals such as bismuth and tin and using atomically flat molybdenum disulfide as an "anvil", they achieved precise shaping on a 1-square-centimeter plane. "The metallic films produced by this method measure 6.3 to 9.2 Å in thickness — equivalent to flattening a three-meter metal cube into a single layer that could cover the entire city of Beijing," Zhang said.

The 2D metal samples, protected by encapsulation layers, remain stable in air for over a year.

"When metals are compressed to atomic thickness, electron motion shifts from 3D to 2D. It's like turning an ocean into a water film, where exotic quantum fluctuations inevitably emerge," said co-corresponding author and researcher Du Luojun. Such extreme-condition metal films will serve as new platforms for studying quantum Hall effects, topological phase transitions, and other frontier topics.

The combination of atomic-scale thickness and high conductivity in these 2D metals enables applications such as transparent flexible electrodes for thinner, more durable foldable phone screens. In catalysis, they could enhance chemical reaction efficiency by dozens of times. Devices made from these atomically thin metals may shrink chip volumes by a thousandfold while reducing power consumption to 1 percent of current levels.

"If 3D metals shaped the material foundation of human civilization, 2D metals may define the next technological era," Zhang said. These materials could lead to revolutionary applications such as room-temperature superconducting devices, ultra-sensitive biochips, and sub-nanometer memory. The team is now developing 2D metal alloy fabrication techniques to supply critical materials for strategic fields like 6G communications and quantum computing.

Nature reviewers said that this study "opens an important research field on isolated 2D metals" and "represents a major advance in the study of 2D materials".

Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
主站蜘蛛池模板: 沈阳市| 瑞安市| 商南县| 大足县| 民权县| 宁河县| 东宁县| 宜丰县| 金沙县| 厦门市| 荆门市| 田东县| 吴川市| 淅川县| 连城县| 黔东| 泾川县| 两当县| 丹巴县| 吴川市| 同江市| 普兰县| 都匀市| 临朐县| 抚远县| 思南县| 昆山市| 唐海县| 贵阳市| 团风县| 邯郸市| 枝江市| 乡宁县| 绿春县| 金门县| 丽江市| 南昌县| 洛扎县| 莲花县| 营山县| 文水县|